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INTRODUCTION

Brosowski [2] has proved the following:

THEOREM. Let VI C V2 be alternation systems of C[a, b], VI E VI and
V2E V2 . In order that there exists an element f E C[a, b] such that Vi E P Vie j),
i = I, 2, it is necessary and sufficient that VI - v2is either zero or changes sign
at atleast d(vl ) points of [a, b]. If VI and V2 are contained in C2[a, b], then we
can choose f to be a polynomial.

For the case of polynomials, Rivlin [7] posed the following:

PROBLEM. Characterize those n-tuples of algebraic polynomials {Po,
PI"'" Pn-I} with degree of Pi = i, i = 0, 1,... , n - 1, for which there exists
an f in C[a, b] such that the polynomial of best approximation of degree i to f
ispi,i=O,I, ... ,n-l.

He has shown that for this to be true it is necessary for each pair i, j with
o~ i < j ~ n - I that the polynomial Pi - Pi is either zero or changes sign
at atleast i + 1 points of [a, b]. Deutsch, Morris, and Singer [5] have shown
that in the case n = 2, the condition is also sufficient. Sprecher [8] has
extended this result to the case of two polynomials of arbitrary degrees and
in [9] has given a solution to the above problem for n = 3. Hegering [6]
and Subrahmanya [10] have considered general Chebyshev systems of
C[a, b]. Subrahmanya [11] has given a solution to the Rivlin problem for
a general n. Brosowski and Subrahmanya [3] have considered C[T], where T
is a compact Hausdorff space and have characterized an infinite set of
elements for which there exists an f E C[T] with this set of elements as best
approximations from arbitrary subsets which they assume suns only in the
necessity part. Hegering [6] has also proved the following:

Let VI C V2 be Haar subspaces of C[a, b] and Vi E Vi, i = 1,2. Let
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VI E CIt[a, b] and V 2 E CI[a, b], h, lEN (h, I = 00 allowed). Under the necessity
condition of Rivlin there exists an fE Cmin (!t·Il[a, b] such that Vi E Py(f),
i = 1,2. '

In this paper we generalize this result to alternation systems. Our proof is
simple and straight forward.

We now give a brief review of some notation. Let C[a, b] denote the set of
all continuous real-valued functions defined on [a, b]. C[a, b] is equipped
with the norm given by

IIIII:= sup IJ(t)!.
tE[a,b]

Let V C C[a, b] and f E C[a, b]. An element Vo E V is said to be a best appro
ximation to f in V, if

Ilf - Vo II = inf III - V II =: Ev(f).
VEY

We denote by Py(f) the set of all best approximations to ffrom V, that is,

Py(f) = {v E V Ilif - v II = E y(/)}

A nonempty subset V of C[a, b] is said to be an alternation system if there
exists a mapping

d: V----+ ~

such that d(v) ? 1 for each v E V and if the following condition is fulfilled:

An element v in V is a best approximation of an f in qa, b] if and only if
there exist points to , tl ,... , ta(v) with a ~ to < tI < .. , < ta(v) ~ b, and an
7J E { -1, +I} such that

k = 0, 1,... , d(v).

TIIE MAIN RESULT

TIIEOREM. Let VI C V2 be alternation systems ofC[a, b], VI , V2 C O[a, b],
VI E VI' and V2 E V2 • In order that there exists an elementfin Cl[a, b] such that
Vi E P v (f), i = 1,2; it is necessary and sufficient that VI - V2 is either zero,
or changes sign at at/east d(vI ) points of [a, b].

For the proof we require the following lemmas.
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LEMMA I. Let M I be a compact Hausdorff space in lRn and Ma an open set
containing MI' Then there exists a function F defined on Ma with compact
support M 2 :J M I with the following properties:

(a) FE coo[Ma],

(b) F(t) = I for t E M I ,

(c) 0 ~ F(t) ~ I for t E M 2\MI .

For the proof of the above lemma see de Rham [4, p. 4].

LEMMA 2. Let UI , U~I be piecewise continuously differentiable functions
in C[a, b] and let

M I := {tI , t2 , , tk },

M_I := {TI' T2 , , Tj}

be disjoint subsets of the open interval (a, b), with the following properties:

(i) U_I(t) < 0 < UI(t), Vt E [a, b].

(ii) Ui is continuously differentiable at the points of M i , i = I, -I.
Then there exists anfE Cl[a, b] such that

(a) f(t,..) = UI(t,..), I-t = I, 2, , k,

(b) f(TJ = U-bv), v = I, 2, ,j,

(c) U_1(t) ~ f(t) ~ Ult), Vt E [a, b].

Proof Set for I-t = 1,2,... , k and Al , a positive real number,

and for v = I, 2,... , j and A_I, a positive real number,

Then we have

G}(tlt , AI) = U1(tlt),

G;\Tv , A_I) = U-I(Tv),

I-t = I, 2,... , k,

v = 1, 2, ... ,j.

(I)

(2)

Further we have that G,,! and G;1 are continuously differentiable at t" and 7'v

respectively. By choosing Al and A-I small enough, we have that in an open
interval (Cit, dlt) of t" and an open interval (c;1, d;I) of Tv ,

o < G}(t, AI) ~ UI(t),

o > G;I(t, A-I) ~ U_I(t),

Vt E (c" , d,,),

Vt E (c;\ d;I),

(3)

(4)
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and G/ restricted to (c" , dJ and G;I restricted to (c;\ d;I) are, respectively,
in CI(C" , d,,) and CI(C;\ d;I). We can further assume, by taking these
intervals sufficiently small, that these intervals are pairwise disjoint. Now
consider the interval (c" , d,,), {-L = 1,2,... , k. Since t" E (c" ,d,,), there exists
a compact interval I" containing t" in its interior. Apply Lemma I with
M I = I" and M 3 = (c" , d,,). Thus there exists a function F" and a compact
set 1" :J I" such that

(ii) F" EO CCXJ(c" , d,,),

(b) Fit) = 1 for tEl" ,

(c) 0 ~ F,,{t) ~ 1 for t EI"\I,,.

We further define F,,(t) = 0 for t E [a, b]\(c" , d,,). Then it is clear that F" is in
CCXJ[a, b]. Similarly we define for each v, v = 1, 2, ... ,j; Fv-

I E CCXJ[a, b]. We
now set,

k j

f(t):= L Fit) G/(t, '\) + L F,-:I(t) G-;\t, A-I)
J.J.=1 v=l

for all t in [a, b]. We claim thatfE CI[a, "b] and satisfies (a), (b), and (c) of the
lemma. Notice thatfis well defined on [a, b]. Since F,,(t) G"I(t, AI) E CI[a, b]
and F;I(t) G;I{t, A-I) E CI[a, b], we have that fE GI[a, b]. If t = t" , then
from the definition off it follows that

since for all the indices i =1= {-L, Fi(t) = 0 on (c" , d,,) and for all indices v,
v = 1, 2, ...,j; F;I(t) = 0 on (c" , d,,). Since Fit,,) = 1,

This proves (a). Similarly, when t = Tv, we have f(Tv) = U_I(Tv )' Finally,
if t E (c" , dJ, then, 0 ~ Fit) ~ 1 and from (3), we have

Similarly, if t E (c;\ d;I), we have 0 ~ F;I(t) ~ 1, and from (4) it follows
that

UI(t) > 0 ? f(t) = F;I(t) G;I(t, A-I) ? U_I(t).

If t rf= {U~~I (c" , d,,)} U {U;~I (c;\ d;I)}, then clearly we have that
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Combining these we have
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for all t E [a, b].

This completes the proof of Lemma 2.

Proof of the theorem. The proof is exactly the same as it is for the case
when VI C V2 C C2 [a, b] (see Brosowski [2]). For the sake of completeness
we give here the proof of the sufficiency part. The case VI = V2 follows from
Brosowski [I, Theorem 2.15, p. 62]. Let VI =F V2 • Let a l , a 2 , ••• , aa(v ) be the

1

zeros of VI - V2 taken in their natural order. Put ao = a and aa(v ) + I = b.
1

Then we have

Then there exists an 'Y} E {-I, I} and for i = 0, I, 2, ... , d(v l ) points tu in
(ai, ai+1) such that

for i = 0, I, ... , d(vl)' Since V2 - VI has at least one zero in (a, b), we can
choose d(v2) + I points t2•0 , t2,1 ,... , t2,d(v

2
) such that

and

for i = 0, I, ... , d(v2)' With a suitable real number A > 0, we set

Ul(t):= min{(vl(t) + A + (3), (v2(t) + A + f3/2)} (x)

U-let) := max{(vl(t) - A - (3), (v2(t) - A - f3/2)} (xx)

Then we have, if A is sufficiently large, that

for all t E [a, b].

Notice that at a point tl •i with 'Y}(-I)i = +1, we have

Hence in a neighborhood of tu also we have the same inequality. Similarly,
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at a point tI ,8 with 7](-1Y = -1, we have that if tEa small neighborhood
of t1,8 ,

vit) - A - f3 > v2(t) - A - f3/2,

This shows that UI is continuously differentiable at the points tI •i with
7](-I)i = 1 and U-I is continuoulsy differentiable at the points t1,8 with
7](-1)0 = -1. Similarly we can show that at the points t2,i , with i even,
UI is continuously differentiable and U_I is so at the points t2•0 with s odd,
Thus if we set

M I := {tl,i with 7](-I)i = I} U {t2.i with i even}

M -1 : = {tl,s with 7]( _1)8 = -I} U {t2 ,0 with s odd},

we have that Ui is continuously differentiable on M i , i = 1, -1. By
Lemma 2 we have that there exists anfE CI[a, b] such that

(i) U-I(t) ~ J(t) ~ UI(t) for all t E [a, b],

(ii) J(t) = UI(t) on M I ,

(iii) J(t) = U_I(t) on M_I .

Now from (x) and (xx) it follows that

-(A + f3) ~ J(t) - vIet) ~ A + f3

-(A + f3/2) ~ J(t) - v2(t) ~ A + f3/2

for all tE[a,b]. 1ft = tI,iwith7](-l)i = 1 then we have

and so we have

while if t = tl,o with 7)(-1)8 = -1 we have

Similarly if t = t2 •i with i even, we have

and if t = t2 ,0 with s odd we have
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Since VI and V2 are alternation systems we conclude that
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i = 1,2.

This completes the proof of the theorem.
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