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INTRODUCTION
Brosowski [2] has proved the following:

THEOREM. Let V; C V, be alternation systems of Cla,b], v,€V, and
vy € Vy . In order that there exists an element f € Cla, b] such that v, € Py ( f),
i = 1,2, it is necessary and sufficient that v, — v, is either zero or changes sign
at atleast d(v,) points of [a, bl. If V, and V, are contained in C?[a, b], then we
can choose f to be a polynomial.

For the case of polynomials, Rivlin [7] posed the following:

PROBLEM. Characterize those n-tuples of algebraic polynomials {p,,
D1 seees Py} With degree of p; = i, i =0, 1,...,n — 1, for which there exists
an fin Cla, b] such that the polynomial of best approximation of degree i to f
isp,,i=0,1,..,n— 1.

He has shown that for this to be true it is necessary for each pair i, j with
0 << i <<j < n — 1 that the polynomial p; — p;, is either zero or changes sign
at atleast i + 1 points of [a, b]. Deutsch, Morris, and Singer [5] have shown
that in the case n = 2, the condition is also sufficient. Sprecher [8] has
extended this result to the case of two polynomials of arbitrary degrees and
in [9] has given a solution to the above problem for » == 3. Hegering [6]
and Subrahmanya [10] have considered general Chebyshev systems of
Cla, b]. Subrahmanya [11] has given a solution to the Rivlin problem for
a general n. Brosowski and Subrahmanya [3] have considered C[T], where T
is a compact Hausdorfl space and have characterized an infinite set of
elements for which there exists an f'e C[T] with this set of elements as best
approximations from arbitrary subsets which they assume suns only in the
necessity part. Hegering [6] has also proved the following:

Let V,CV, be Haar subspaces of Cla,b] and v;eV,, i =1,2. Let
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v, € CMa, bl and v, € C'la, b], h, [e N (h, | = oo allowed). Under the necessity
condition of Rivlin there exists an fe C™"*-Diq, b] such that v; e Py(f),
i=1,2

In this paper we generalize this result to alternation systems. Qur proof is
simple and straight forward.

We now give a brief review of some notation. Let C[a, 5] denote the set of
all continuous real-valued functions defined on [a, b]. Cla, b] is equipped
with the norm given by

WAl= Sup ().

Let V C Cla, b] and f e Cla, b]. An element v, € V is said to be a best appro-
ximation to fin V, if

1f = voll = inf 11/ — 0| =: Ex(f).
We denote by P,(f) the set of all best approximations to f from V, that is,

Py(f) ={veVIif—vl = E/f)}
A nonempty subset V of Cla, b] is said to be an alternation system if there
exists a mapping
daV-R

such that d(») > 1 for each v € I and if the following condition is fulfilled:

An element v in V is a best approximation of an f in Cla, b] if and only if
there exist points 1y, by ,o.., tate) With a <ty < t; < =+ <Ig) < b, and an
n€{—1, 41} such that

If = vl = n(=D*f () — v(t)),

k=0, 1,., ).

THE MAIN RESULT

THEOREM. Let V; C ¥, be alternation systems of Cla, b], V; , V, C C'[a, b],
v, € Vy,and vy € V, . In order that there exists an element f in C[a, b] such that
v;e Py(f), i = 1,2; it is necessary and sufficient that v, — v, is either zero
or changes sign at atleast d(v,) points of [a, b].

For the proof we require the following lemmas.
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LEMMA 1. Let M, be a compact Hausdorff space in R* and Mg an open set
containing M, . Then there exists a function F defined on M; with compact
support M, D M, with the following properties:

(a) FeC~[My],
(b) F@)=1forteM,,
() 0 F(r) < forte M\M, .

For the proof of the above lemma see de Rham [4, p. 4].

LemMA 2. Let U;, U_, be piecewise continuously differentiable functions
in Cla, b] and let
My:={t;, ty,..., t;},
M—l = {Tl s T seees Tf}
be disjoint subsets of the open interval (a, b), with the following properties:

(1) U_4(t) < 0 < Ugt), YVt €[a, bl.
(i) U, is continuously differentiable at the points of M;,i =1, —1.
Then there exists an f € C'[a, b] such that

(a) f(tu) = Ul(tu)a l'L = 15 25"-, k,
(b) f(TV) = le(Tv)a Vv = 15 23"".]"
(©) U.4(t) < f(1) < Uy(r), Vi€ [a, b).

Proof. Setforp = 1,2,..., kand A, a positive real number,
Gt A := U(t) — At — 1),
and forv = 1, 2,...,jand A_,, a positive real number,
Gt Ay 1= U_y(1) + A(t — )%
Then we have
G Mt , A) = Uz, pn=12..k, 1))
G, Y (7,, ALy = U_y(r,), v =1,2,.,] 2

Further we have that G,! and G, are continuously differentiable at ¢, and =,
respectively. By choosing A; and A_, small enough, we have that in an open
interval (c, , d,) of t, and an open interval (¢;*, &) of 7, ,

0 < GMt, A < Uy, Vte(c,,d), 3
0> Gt A) = UL, Vee(e™d™, “@
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and G, restricted to (c, , d,) and G;* restricted to (¢, 4;) are, respectively,
in CYc,,d,) and C¥c*, d;%). We can further assume, by taking these
intervals sufficiently small, that these intervals are pairwise disjoint. Now
consider the interval (¢, ,d,), 0 = 1, 2,..., k. Since ¢, €(c, , d,), there exists
a compact interval I, containing ¢, in its interior. Apply Lemma 1 with
M, =1, and M; = (¢, , d,). Thus there exists a function F, and a compact
set I, D I, such that

@ F,eCc,,d,),
(b) F(t)=1fortel,,
© O0<F() <lfortel)\l,.

We further define F () = 0 for 1 € {a, b]\(c.. , d.). Then it is clear that F, is in
C=[a, b]. Similarly we define for each v, v = 1, 2,..., j; F,' € C*[a, b]. We
now set,

f@0) =Y F()GX M) + Y FA0O Gt A

n=1 v=1

for all ¢ in [a, b]. We claim that '€ C[a, b] and satisfies (a), (b), and (c) of the
lemma. Notice that fis well defined on [q, b]. Since F,(¢) G i(t, A;) € C'a, b}
and F7Y(¢) G;\(t, X)) € CY[a, b], we have that fe C'a, b]. If t = ¢, , then
from the definition of f it follows that

f(tu) = Fu.(tu) Gul(tu ’ Al)

since for all the indices i = u, Fi(t) = 0 on (¢, , d,) and for all indices v,
v=1,2,.,j; F%(t) = 0on (c,, d,). Since F,(¢,) = 1,

f(tu) = Gul(tu s /\]) = Ul(tu)

This proves (a). Similarly, when ¢ = 7,, we have f(r,) = U_/(r,). Finally,
if te(c,,d,), then, 0 < F,(t) < 1 and from (3), we have

U#l(t) < 0 < f(t) = Fu(t) Gul(t’ A1) < Ul(t)'

Similarly, if 7€ (¢; %, d*), we have 0 << F7)(t) < 1, and from (4) it follows
that

Ult) >0 = f(&) = F,(1) G,'(t, AL = U_(1).
If t ¢ {U_s (c. » d} U {Ul_, (%, @79}, then clearly we have that

U() < f(t) < Uy(®).
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Combining these we have
U_i(®) < f(r) < Uy) for all t¢€][a,b].

This completes the proof of Lemma 2.

Proof of the theorem. The proof is exactly the same as it is for the case
when 7, C V, C C?[a, b] (see Brosowski [2]). For the sake of completeness
we give here the proof of the sufficiency part. The case v; = v, follows from
Brosowski [1, Theorem 2.15, p. 62]. Let v, # v, . Let a,, a5 ,..., da(v,) be the
zeros of v, — v, taken in their natural order. Put g, = a and a,(,) + 1 = b.
Then we have

a=a, <@ <a < <y <ayw +1 =20

Then there exists an ne{—1, 1} and for i =0, 1, 2,..., d(v,) points #,; in
(a; , a;,,) such that

=1 (vty,:) — 0:(t1,)) = B >0

for i = 0, 1,..., d(v,). Since v, — v, has at least one zero in (a, b), we can
choose d(v;) + 1 points ty0, f31 5..; I3,a(»,) Such that

A<y <ty < " <l <b

and
[ va(ts,0) — vo(t,)] < BJ2

for i = 0, 1,..., d(v,). With a suitable real number 4 > 0, we set

Uy(t) := min{(vy(t) + 4 -+ B), (vat) + 4 + B[2)} )
U_y(t) := max{(vy(r) — 4 — B), (va(t) — 4 — B/2)} (xx)

Then we have, if A4 is sufficiently large, that
U, (t) <0 < Uft) forall refqa,b].
Notice that at a point ¢, ; with n(—1)! = 41, we have
0(t,) + A+ B <oty + A+ B2

Hence in a neighborhood of #, ; also we have the same inequality. Similarly,
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at a point #; , with n(—1)® = —1, we have that if € a small neighborhood
oft, ,,

0)(t) — A — B > vt) — A — BJ2.

This shows that U, is continuously differentiable at the points ¢ ; with
n(—1)) =1 and U_, is continuoulsy differentiable at the points #,,, with
n(—1)* = —1. Similarly we can show that at the points 7, ;, with i even,
U, is continuously differentiable and U_, is so at the points #, ; with s odd.
Thus if we set

M, = {t; ; with n(—1)* = 1} U {¢, ; with { even}
M_, .= {t; , with n(—1)* = —1} U {t, ; with s odd},

we have that U, is continuously differentiable on M;, i =1, —1. By
Lemma 2 we have that there exists an fe C[q, b] such that

(@) U0 <f() < U)forall tea, b],

(i) f() = Uy(t) on M,,
(iii) f(@)=U_(t)on M_,.

Now from (x) and (xx) it follows that

A+ <fO—n)<A4+B
—(A+B2) <f()—v(t) <A+ B2

for all ¢ € {a, b]. If t = 1, ; with n(—1)? = 1 then we have
fh) = Ut =vtn) + 4+ B
and so we have
[, ) — o) =A4+B

while if 1 = ¢, ; with n(—1)* = —1 we have

flt1d) —oty,) = —4—B.
Similarly if ¢ = ¢, ; with  even, we have

flte,) — vats,) = A+ B2
and if t = ¢, ; with s odd we have

f(tz,s) - Uz(’z,s) =—4— /3/2



SIMULTANEOUS BEST APPROXIMATIONS 107

Since ¥, and ¥, are alternation systems we conclude that

UiEPVi(f)7 i:152

This completes the proof of the theorem.
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